
Saving on energy in a 
web video environment

Created May 11, 2022
Updated June 15,2023



Can we measure energy consumption in a 
browser or WebView?
• Short answer: yes and no (mid-2022)

• Long answer: Battery Status API (JavaScript)

- Available for mobile and portable devices

- Changes in battery status: chargingchange & levelchange

- Battery level in %

- Charging time and discharging time in seconds

- Available in Chrome & Edge but NOT in Firefox or Safari

We can get % level data in some environments but no translation to 
mAh or Watts



How to optimise energy consumption for an 
HTML5 video player then?
• Media Capabilities API (JavaScript) to the rescue

• Supported in all modern browsers and WebViews

• Supports many input settings (framerate, resolution, bitrate)

• Gives information about 

 - Supported configuration

 - Smooth playback

 - Power efficient

Given several codecs are available in a HLS or MPEG-DASH manifest 
we can make a decision on which one to use



Media Capabilities return values 

• supported: yes or no for the input configuration (may slightly vary from 
canPlayType and isTypeSupported)

• smooth: the device evaluate the capacities to playback content without dropped 
frames 

• powerEfficient: is hardware or software decoding available? 

Hardware decoders outperform software decoders in power efficiency 
and decoding speed, but software decoders can remain efficient for 
low-resolutions





Testing results - configuration

const mediaConfig = {

type: 'media-source',

audio: {

contentType: codec.audioOnly,

channels: 2,

bitrate: 128000,

samplerate: 48000

},

video: {

contentType: codec.videoOnly,

width: 1920,

height: 1080,

bitrate: 5000000,

framerate: 30

};



Testing results - Desktop

• Chrome 101 on Windows 11
• AVC & AAC-LC audio: supported, smooth and power efficient
• HEVC & HEv2-AAC audio: NOT supported
• VP8 & vorbis audio: supported, smooth and NOT power efficient
• VP9 & opus audio: supported, smooth and power efficient
• AV1 & HEv2-AAC audio: supported, smooth and NOT power efficient
>> Best energy/quality ratio => VP9 with opus audio

• Safari 15.4 on macOS 12.3.1
• AVC & AAC-LC audio: supported, smooth and power efficient
• HEVC & HEv2-AAC audio: supported, smooth and power efficient
• VP8 & vorbis audio: NOT supported
• VP9 & opus audio: supported, smooth and power efficient
• AV1 & HEv2-AAC audio: NOT supported
>> Best energy/quality ratio => HEVC & HEv2-AAC audio



Testing results - Mobile

• Chrome 101 for Android 11
• AVC & AAC-LC audio: supported, smooth and power efficient
• HEVC & HEv2-AAC audio: NOT supported
• VP8 & vorbis audio: supported, smooth and power efficient
• VP9 & opus audio: supported, smooth and power efficient
• AV1 & HEv2-AAC audio: supported, smooth and power efficient
>> Best energy/quality ratio => AV1 & HEv2-AAC audio

• Safari for iOS 15.4
• AVC & AAC-LC audio: supported, smooth and power efficient
• HEVC & HEv2-AAC audio: supported, NOT smooth and power efficient
• VP8 & vorbis audio: NOT supported
• VP9 & opus audio: supported, smooth and power efficient
• AV1 & HEv2-AAC audio: NOT supported
>> Best energy/quality ratio => VP9 & opus audio



Go to https://www.radiantmediaplayer.com/checkcodecs.html and see what your 
device can do!

Test Media Capabilities on your device

https://www.radiantmediaplayer.com/checkcodecs.html


Server side

Encode your content with at least one next-gen codec and one legacy codec

- Legacy codec: H.264 for its wide support

- Next-gen codecs: 

- H.265 (Apple devices and Smart TVs) or/and

- AV1 (Emerging support but better performance than H.265)

- Bundle your HLS or MPEG-DASH manifest with your various codecs

Client-side

Use a HTML5 video player that implements codecs selection with HLS or MPEG-DASH based on Media Capabilities API

 - Radiant Media Player

 - Shaka Player

Media Capabilities API in the real world!



Best practices for building energy-efficient 
media web applications
• Do not use autoplay

• Do not use media content preloading

• Make your Adaptive Bitrate Streaming (ABR) logic more environment-friendly
• Do not account for device pixel ratio in your ABR logic

• Cap resolution to current player size in your ABR logic

• Compute initial bandwidth with efficiency

• Adapt buffer length based on content length

• Make your ABR logic less aggressive

• Use Media Capabilities API

• Leave the viewer with a choice



Q & A


	Slide 1: Saving on energy in a web video environment
	Slide 2: Can we measure energy consumption in a browser or WebView?
	Slide 3: How to optimise energy consumption for an HTML5 video player then?
	Slide 4: Media Capabilities return values 
	Slide 5
	Slide 6: Testing results - configuration
	Slide 7: Testing results - Desktop
	Slide 8: Testing results - Mobile
	Slide 9
	Slide 10
	Slide 11: Best practices for building energy-efficient media web applications
	Slide 12: Q & A

